
llava - Java in Lisp Syntax

Harold Carr
carr@llava.org

ABSTRACT
llava is Java in Lisp syntax (rather than Lisp or Scheme
written in Java). llava does not contain special syntax or
functions to call Java methods nor does it define an orthogo-
nal set of types (e.g., Scheme strings, Common Lisp arrays).
Instead, llava is Java expressed in prefix list syntax with all
data being instances of Java classes. llava adds additional
types (e.g., Pair, Procedure, Symbol and Syntax) to enable
one to work with lists and to define procedures and macros.
The paper describes llava language design and implementa-
tion, focusing on its transparent reflective invocation system
and its package/import system.

Keywords
Lisp, Scheme, Java, Reflection, Modules

1. OVERVIEW
This paper discusses the motivation for Java, presents how it
differs from similar efforts, and describes its implementation:
the Reflective Invocation system that is the core of enabling
llava to provide a prefix notation for Java method calls;
how llava procedures are integrated with Java such that
method invocations on Java objects take precedence over
llava procedures; extending package and import to work
with both Java class files and llava procedures and files;
and, finally, the llava compilation strategy and “engine”-
based runtime.

1.1 Motivation
I once built Lisp systems [1, 2]. Then funding caused me
to do C++ [3]. Then Java arrived and programming felt
fun again. It reminded me I wanted more. So I used Kawa
[4] for interactivity and abstractions (i.e., macros). But I
kept running into missing Scheme library items. So I made
foreign-function calls to Java. However, I had to convert
between Kawa/Scheme I/O, strings, characters, etc., and
Java types. (Note: this was with an early version of Kawa.)
This lack of interoperability made me realize I didn’t want
Lisp/Scheme in Java.

That’s when I got the idea for llava. Why not create a
version of Java that uses Lisp syntax to write Java classes?
Then extend that system to include a few special forms (e.g.,
lambda, set!, if, quote, defmacro), pairs and symbols, a
REPL and support for incremental (re)definition.

llava is access to Java via Lisp syntax and features. The
philosophy of llava is: maximum leverage of Java—only

add what is missing or cannot be done in Java.

1.2 The llava language
llava is a prefix version of Java expressed in list structure.
As such, it is not a version of Scheme with special notation to
access Java (like Jscheme [5]) or a version of Common Lisp
with a foreign-function interface to Java (like ArmedBear
Common Lisp (ABCL) [6]). Table 1 compares language fea-
tures between Java, llava and these other languages. The
table should make it clear that llava is a more direct pre-
fix/list notation of Java - llava’s primary goal.

Jscheme uses “dot” notation [5]. This seems to have one ad-
vantage over llava: accessing a static field can be accessed
as a variable reference, whereas llava chooses to represent
this as a procedure call. Table 2 shows this (along with
virtual field access).

llava presents Java directly (e.g., true and false rather
than Jscheme’s #t and #f). Along these lines, rather than
invent new module and condition systems, llava exposes
package/import and try/catch/finally in a natural way:

(package org.llava.demo)

(import java.lang.ArithmeticException)
(import java.lang.Exception)

(let ((bomb 1))
(define (demo)
(try

(if (< bomb 0)
(throw (new ’Exception "Give up!")))

(list "Normal result is: " (/ 2 bomb))
(catch (ArithmeticException e)
(list "Arithmetic: " e))

(catch (Exception e)
(list "Exception: " e))

(finally
(set! bomb (- bomb 1))))))

1.3 Implementation
1.3.1 Reflective invocation
llava’s Reflective Invocation (RI) system enables access to
Java without special syntax or explicit foreign-function in-
terfaces. Once a Java object is obtained its methods and
fields are immediately available:

(toLowerCase (substring "Foo-Bar" 4))
=> "bar"

Table 1: Notation Comparisons
Java llava jscheme abcl
new
import java.util.Hashtable; (import java.util.Hashtable) (import ”java.util.Hashtable”)

Hashtable ht = new Hashtable(); (set! ht (new ’Hashtable)) (set! ht (Hashtable.)) (setq ht

(jnew (jconstructor ”java.util.Hashtable”)))

virtual method calls
ht.put(”three”, 3); (put ht ”three” 3) (.put ht ”three” 3) (jcall (jmethod ”java.util.Hashtable” ”put”

"java.lang.Object” ”java.lang.Object”)

ht ”three” 3)

static method calls
(import java.lang.Byte)

Byte b = Byte.decode(”3”); (set! b (Byte.decode ”3”)) (set! b (Byte.decode ”3”)) (setq b (jstatic

(jmethod ”java.lang.Byte” ”decode”

"java.lang.String”)

nil ”3”))

Table 2: More Notation Comparisons
Java llava jscheme
virtual fields
import org.omg.CORBA.IntHolder; (import org.omg.CORBA.IntHolder) (import ”org.omg.CORBA.IntHolder”)

IntHolder ih = new IntHolder(); (set! ih (new ’IntHolder)) (set! ih (IntHolder.))

ih.value = 3; (value! ih 3) (.value$ ih 3)

ih.value; (value ih) (.value$ ih)

static fields
import java.io.File; (import java.io.File) (import ”java.io.File”)

File.pathSeparator; (File.pathSeparator) File.pathSeparator$

llava looks up llava procedure definitions in internal sym-
bol tables. If a procedure is not defined then control goes to
the RI. The RI uses Java reflection to invoke the appropri-
ate method by using the procedure call name as the method
name, the first argument as the class type (and message
recipient) and the types of the remaining arguments.

1.3.2 llava procedures viz Java method calls
A llava procedure with the same name as a method of
the first argument (and matching argument types) will be
invoked if defined with an explicit lambda as:

(define toLowerCase
(lambda (x) (toUpperCase x)))

(toLowerCase (substring "Foo-Bar" 4))
=> "BAR"

Most of the time that is not what you want to happen.
llava provides an alternate form of define that allows Java
methods to take precedence:

(define (toLowerCase x)
(- x))

(toLowerCase (substring "Foo-Bar" 4))
=> "bar"

(toLowerCase 3.4)
=> -3.4

In other words, if the lookup finds a procedure defined with
an explicit lambda then that procedure will always be in-
voked regardless of the argument types. If lookup finds a
procedure defined without an explicit lambda then llava

will first attempt an RI invocation. If RI finds a method,
it will invoke the method and return the results. If RI does
not find a method then the llava procedure will be invoked.
If lookup does not find either type of llava procedure then
llava will throw an exception indicating an undefined top-
level variable.

1.3.3 package/import system
Like Java, llava’s import enables “short”-form access to
constructors and static methods and static fields:

(import java.lang.Long)
(set! l (new ’Long 34))
(getName (getClass (Long.decode "23")))
=> "java.lang.Long"
(Long.MAX_VALUE)
=> 9223372036854775807

(import java.lang.System)
(System.out)
=> java.io.PrintStream@1434234

When a Java class is imported, llava creates a llava pack-
age for that class and defines procedures in that package to
access fields. It also adds the imported package to the list
of packages imported by the package doing the importing.
Then, during variable lookup, any names with a single dot
(“.”) in them will be expanded to the full package name.

llava code may define packages:

(package org.example)

(define (whatZone x)
(let* ((tz (getTimeZone x))

(n (getDisplayName tz)))
n))

Details of llava’s package and import implementation and
how they interact with Java classpath, the file system, and
the REPL are given in the main body of the paper.

1.3.4 Compiler and runtime system
llava is compiled to a few special forms: application, begin,
if, lambda, literal, ref, set!. Those forms are written as ex-
plicit Java classes, each with a run method that takes the
current lexical environment and an evaluation engine that
also has a run method. The forms and the engine cooper-
ate such that the same call to engine.run is executed in a
Java while loop when evaluating tail calls. This makes the
llava interface to Java properly tail-recursive. The engine
evaluator is similar to one used in older versions of Jscheme
[7].

1.4 Contribution
The main contribution of llava is that it is Java in Lisp
syntax rather than another language written in Java. It
extends Java by providing macros, procedures, lists, and
symbols. Its core feature is automatic Reflective Invocation
enabling method calls on Java objects without special syn-
tax, declarations or APIs.

Another contribution is the package/import algorithm for
enabling dynamic hierarchies of namespaces for top-level
variables.

The remainder of this paper gives more details on the de-
sign of the language, implementation techniques and perfor-
mance.

2. THE LLAVA LANGUAGE
The examples shown so far have emphasized defining and
calling llava procedures as well as creating Java objects
and calling methods on those objects. llava’s automatic RI
system enables both types of calls to look the same. This,
coupled with support for try, throw, synchronized, etc.,
enables one to write procedures in a prefix form of Java.

It is also desirable to write interface and class definitions
directly in llava. Table 3 shows an extended working ex-
ample of defining and inheriting (abstract) classes in Java
and the equivalent llava code. The symmetry between both
versions derives from llava’s goal to be Java in Lisp syntax.
Rather than devise a new notation for defining classes, llava
provides an intuitive “lispy” syntax such that the mental
translation required to move between Java or llava syntax
is reduced.

2.1 llava language design

It may seem that llava’s notation for classes is simple. How-
ever, the apparent simplicity is the result of numerous small
design decisions.

2.1.1 Methods and fields
Referring to PointBase in Table 3, note that a choice has
been made in representing fields and methods. The field:

protected int x = 0;

could have been represented in many ways. The final two
candidates were:

(protected x 0)
(protected int x 0)

The first form was initially considered since type declara-
tions are not necessary in llava. However, if methods on
classes defined in llava are to be called from Java then it is
useful to have type information.

Similarly, method representation had several candidates:

(public getX() (return x))
(public int getX() (return x))
(public int getX() x)
(public int (getX) x)

The declaration of the return type could be omitted, but like
fields, it is useful to have that information when calling from
Java. Also, keeping field types and method return types
keeps llava representation closer to Java, thereby easing the
translation burden. Since all forms in llava are expressions
there is no need for a return statement (llava’s call/ep

can be used for the cases where a return is needed. call/ep
provides continuations with dynamic extent [8]). Finally,
since llava defines procedures using Scheme syntax it was
decided to be consistent and include the method name at the
head of the list of arguments. This also makes it easier to
distinguish between fields and methods when parsing class
defined in llava.

The previous sentence points out conflicting constraints in
the design of llava: stay close to a prefix version of Java
while borrowing features from Lisp (i.e., Scheme). To settle
a design issue it is useful to keep in mind the target user
of llava. Perhaps a prefix version of Java will hit a sweet
spot, resulting in bringing programmers to Lisp, much in the
same way Java’s similarity with C/C++ enabled C/C++
programmers to more easily migrate to Java. But program-
mers fluent in Lisp may prefer to have well-known Lisp pat-
terns available. The tension of these conflicting constraints
is seen at every step in the design of the llava language.

2.1.2 Lexical structure
There are many possibilities in representing Java comments:

// single line comment

Table 3: Defining Classes
org/llava/pb/PointBase.java org/llava/pb/PointBase.lva

package org.llava.pb; (package org.llava.pb)

import java.util.LinkedList; (import java.util.LinkedList)
import java.util.List; (import java.util.List)

public abstract class PointBase { (public abstract class PointBase

protected List history = new LinkedList(); (protected List history (new ’LinkedList))
protected int x = 0; (protected int x 0)
protected int y = 0; (protected int y 0)

public int getX() { return x; } (public int (getX) x)
public int getY() { return y; } (public int (getY) y)

protected void move(int dx, int dy) { (protected void (move dx dy)
x += dx; y += dy; moved(); (+= x dx) (+= y dy) (moved this))

}

protected void moved() { (protected void (moved)
history.add(this.toString()); (add history (toString this))

System.out.println("Moved: " + this); (println (System.out) (+ "Moved: " this))
}

public List getHistory() { return history; } (public List (getHistory) history)
public String toString() { (public String (toString)

return getName() + " x: " + x + " y: " + y; (+ (getName) " x: " x " y: " y))

}
protected abstract String getName(); (protected abstract String (getName)))

}
org/llava/pb/ColoredPointBase.java org/llava/pb/ColoredPointBase.lva

package org.llava.cp; (package org.llava.cp)

import org.llava.pb.PointBase; (import org.llava.pb.PointBase)

public abstract class ColoredPointBase (public abstract class ColoredPointBase
extends PointBase { extends PointBase
protected String color; (protected String color))

}
org/llava/pb/Point.java org/llava/pb/Point.lva

package org.llava.p; (package org.llava.p)

import org.llava.pb.PointBase; (import org.llava.pb.PointBase)

public class Point extends PointBase { (public class Point extends PointBase
protected String getName() { (protected String (getName)

return getClass().getName(); (getName (getClass this))))
}

}

org/llava/pb/ColoredPoint.java org/llava/pb/ColoredPoint.lva

package org.llava.cp; (package org.llava.cp)

import org.llava.cp.ColoredPointBase; (import org.llava.cp.ColoredPointBase)

public class ColoredPoint (public class ColoredPoint

extends ColoredPointBase { extends ColoredPointBase
public ColoredPoint(String color) { (public (ColoredPoint (String c))

this.color = color; (= color c))
}
protected String getName() { (protected String (getName)

return getClass().getName() (+ (getName (getClass this))
+ " color: " + color + " "; " color: " color " ")))

}
}

org/llava/pb/ThreeDPoint.java org/llava/pb/ThreeDPoint.lva

package org.llava.tdp; (package org.llava.tdp)

import org.llava.p.Point; (import org.llava.p.Point)

public class ThreeDPoint extends Point { (public class ThreeDPoint extends Point
protected int z = 0; (protected int z 0)

public int getZ() { return z; } (public int (getZ) z)
protected void move(int dx, int dy, int dz) { (protected void (move dx dy dz)

z += dz; (+= z dz)
move(dx, dy); (move this dx dy))

}
public String toString() { (public String (toString)

return super.toString() + " z: " + z; (+ (toString super) " z: " z)))

}
}

; ...

/* block
comment */

(/* ...)
(-comment- ...)

/**
* @author me
*/

(/** @author)
(-doc- ...)

At present llava uses ;, -comment- and -doc-. However,
llava is moving towards settling all language design issues
in favor of Java. Therefore support for //, /* and /** seems
likely. Using direct Java style block and javadoc comments
requires more lexical processing since read (and macros)
cannot be used to do the work. Using a prefix version of
Java style block and javadoc comments seems like a good
solution but it is easy to trip read up:

(/* more . . .)

That example will cause read to fail looking for the end of a
cons cell. Perhaps a compromise to keep the implementation
simple while leaning toward Java is to use strings inside of
comments:

(/* "more . . .")

2.1.2.1 Identifiers
When defining procedures and local variables llava sup-
ports “Lispy” characters:

(define *global* 3)
(define (some-procedure 1st-arg 2nd-arg)

(let ((+sum+ (+ 1st-arg 2nd-arg)))
(list +sum+ *global* ’-foo)))

Identifiers for interfaces, classes, fields and methods must
follow Java rules.

2.1.2.2 Literals
llava reserves Java keywords such as public, abstract

and static and adds a number from Lisp such as define,
defmacro, lambda, quote and let. Boolean literals are true

false rather than #t #f or t nil.

Even though llava tries to settle design decisions in favor
of Java there are some cases where Lisp clearly wins out,
such as character representation. Java specifies characters
as ’a’ but the quote reader macro is so fundamental to Lisp
history that it cannot be used for characters. In this case
llava uses the Lisp representation: #\a.

2.1.2.3 Operators
Built-in operators are a place that brings the conflicting con-
straints to the fore:

foo = bar; (= foo bar) (set! foo bar)
x == y (== x y) (eq? x y)
x && y (&& x y) (and x y)
x != y (!= x y) (not (eq? x y))
!x (! x) (not x)
x += 1 (+= x 1) (set! x (+ x 1))

At present llava uses the Scheme versions. However it
seems advisable to change and favor the prefix Java ver-
sions, not only to provide an intuitive translation for non-
Lisp/Scheme programmers, but to avoid shadowing valid
method names such as and and not.

2.1.3 Types, values and variables
Variables in llava interfaces and classes can have modifiers
and/or types. Table 3 shows modified and typed fields and
return types of methods. llava also supports specifying the
types of method parameters:

(import java.util.Hashtable)
(import java.util.Map)

(public class Table
(private static int numCreated 0)
(private Map table)

(public (Table)
(+= numCreated 1)
(= table (new ’Hashtable)))

(public static int (numCreated)
numCreated)

(public void (put (String key) (int value))
(put table key value))

(public int (get (String key))
throws NoSuchElementException

MinusOneException
(let ((v (get table key)))

(cond ((== v null)
(throw (new ’NoSuchElementException)))
((< v 0)
(throw (new ’MinusOneException)))
(else
(intValue v))))))

Note that llava does not support modifiers or types in
llava procedure variables and local variables.

2.1.4 Inheritance and declaring exceptions
The previous example has a method get declaring checked
exceptions. To someone used to Lisp, the declaration seems
to be “floating”—to be missing parenthesis. Perhaps it
would be better as:

(public int (get (String key))
(throws NoSuchElementException

MinusOneException)
...)

However, for consistency, that would require changing the
notation for inheritance in Table 3 to:

(public class Point (extends PointBase)
...)

llava currently supports the non-parenthesized version.

2.1.5 Blocks, statements and expressions
Local variables and blocks are introduced with let and begin.
As shown in a previous example (Section 1.2), llava pro-
vides try/catch/finally. All llava statements are expres-
sions that return values.

2.1.5.1 Looping
llava supports last-call-optimization for procedures so re-
cursion is encouraged. However, when calling methods on
classes defined with llava, recursion is discouraged since the
method calls go through Java’s call stack. llava’s while

macro may be used instead. do in llava is Lisp’s do rather
than Java’s do/while.

The only abrupt transfer of control supported by llava is
throw as shown in the Table example above. call/ep can
be used where break continue and return are needed.

2.1.6 Anonymous classes
The syntax for an anonymous Java class is quite cumber-
some:

AccessController.doPrivileged(
new PrivilegedAction() {
public Object run() {

...
return null;

}
});

At this time llava does not support anonymous classes.
There is no straightforward prefix notation representation
that does not conflict with the notation for procedure ap-
plication. Also, llava’s current compilation strategy makes
it hard to separate the anonymous definition from its exe-
cution in this context.

3. IMPLEMENTATION
This section shows details of llava’s Reflective Invocation
system, the package/import system and the compiler/runtime
system.

3.1 Reflective invocation
llava’s Reflective Invocation (RI) system is similar in imple-
mentation to Skij’s invoke [9, 10, 11] and an older Jscheme
reflection system [12]. The main difference is in how llava

uses RI. Instead of an explicit interface, as in Skij’s invoke

or Jscheme’s dot-notation, RI is part of llava’s variable
lookup algorithm.

Consider the code written in llava and Skij shown in Ta-
ble 4. In llava, a Java call o.m(a1, a2) simply becomes a
prefix call (m o a1 a2)—no need to explicitly invoke Java.
This is accomplished with two techniques:

• llava’s undefined identifier handler calls the RI sys-
tem.

• “generic” procedure definitions that use the RI system.

3.1.1 Undefined identifier handler
Referring to Table 4, note that no special syntax or calls
are necessary to call exists on a File. Suppose that a
llava session does not contain a value bound to exists. In
that case the undefined identifier handler will be executed
when (exists f) is called. The handler will call the RI
to determine if exists is a method of the Class type of f
(although not shown in this example, arguments are also
used to find the method). If a method exists then it is
invoked and the result returned. If no method is found then
llava reports an undefined top-level variable.

In the example, lispList and javaList show that there
may be occasions when automatic RI dispatch needs to be
avoided. Since java.io.File defines a list method and if
a program wanted to return of list of a file, then calling list

with one argument, a file, would result in File.list being
invoked. The example shows the usage of -list to avoid
this problem.

3.1.2 Generic procedure definitions
llava supports both Java classes and Scheme-like proce-
dures. To enable the two to coexist, llava provides two
forms of procedure definitions:

(define (floatValue x)
(list ’floatValue x))

(floatValue ’s) => (floatValue s)
(floatValue 10) => 10.0

(define floatValue
(lambda (x)
(list ’floatValue x)))

(floatValue ’s) => (floatValue s)
(floatValue 10) => (floatValue 10)

The first form of llava procedure definition is a “generic”
procedure definition. In the example, it causes a generic
procedure to be bound to floatValue in the current pack-
age. When floatValue is applied, the generic procedure is
found in the top-level variable map. The generic procedure
mechanism uses the RI for the call. If the RI call succeeds
in finding a matching method then the method is executed
and the result is returned. If RI does not find a match, then
the body of the llava procedure is executed instead.

The second form of llava procedure definition is a “lambda”
procedure definition. In the example, the definition causes a
binding of a lambda procedure in the top-level map. When
floatValue is applied the lambda procedure is found and
the body of the lambda is executed, regardless of argument
types (assuming the correct number of arguments have been
supplied).

llava uses lambda definitions for procedures such as + and
! to avoid unnecessary RI overhead since these identifiers
can never be Java method names.

3.2 package/import system
Besides the idea of the llava language, another contribution
of this work is the implementation of a namespace system to

Table 4: Implicit viz-a-viz explicit RI usage

;;; llava ;;; skij

(import java.io.File)
(import java.util.Date)

(define (lastMod name) (define (lastMod name)
(let ((f (new ’File name))) (let ((f (new ’java.io.File name)))
(if (exists f) (if (invoke f ’exists)

(new ’Date (new ’java.util.Date
(lastModified f))))) (invoke f ’lastModified)))))

(define (sep) (define (sep)
(File.separator)) (peek-static ’java.io.File ’separator))

(define (lispList name) (define (lispList name)
(-list (new ’File name))) (list (new ’java.io.File name)))

(define (javaList name) (define (javaList name)
(list (new ’File name))) (invoke (new ’java.io.File name)

’list))

support package and import. Packages provide partitions
for top-level variable bindings.

Each package defines a unique namespace that maps top-
level variables defined in that package to values. When
accessing a variable while executing in a particular pack-
age, say A, that package’s map is searched for the variable’s
value. If found it is returned. If not, the search continues in
any packages imported by A, in the order of imports. For
example, suppose there are three packages:

(package a.A) (package b.B) (package c.C)

(import c.C) (import c.C) (import b.B)
(import b.B) (import a.A)

(define (a x) (define (b) (define (c)
(if (eq? x ’c) (cons ’b (c))) (cons ’c (a ’c)))

’a
(b)))

In this example, if the current namespace (i.e., package) is
a.A and (a 0) is executed then a call to (b) occurs. A
binding for b is not found in a.A’s nor c.C’s namespace (in
that order). b’s binding is found in b.B’s namespace. When
b executes it finds a binding for c in c.C’s namespace even
though control began in a.A’s namespace. Similarly for call-
ing a from within the c.C namespace, resulting in a final
value of (b c . a).

The internal representation of this example is shown in Fig-
ure 1. The llava implementation contains a map from full
package names to package objects. Each package object con-
tains a map from identifiers to values bound (in that pack-
age) to the variables represented by the identifier. Each
package object also contains an ordered “imports” list point-
ing to package objects representing packages imported by a
package.

The variable binding search algorithm is straightforward:
search for the identifier in the current package’s map. If not
found look in the environment of imported packages. An
optimization is: cache identifier hash codes and use hash
tables that take both the hash code and the identifier as
arguments. That way the hash code is only computed once

Figure 1: Example package structure

per identifier on demand and each hash table uses the hash
code rather than recompute it. The identifier is also passed
in to resolve hash conflicts within a hash table.

Although the internal package representation and search al-
gorithm are straightforward, loading packages is more com-
plex. Several llava features contribute to the complexity:

• Java classes can be imported.

• llava provides a REPL, so packages can be defined
on-the-fly interactively and then later become files.

• A llava package file of a package already represented
internally should not be loaded unless it is a new file
or has changed since it was last loaded.

• Even if a llava package file has not been touched it is
still necessary to search the transitive closure of its im-
port list for any package files that may have changed.

• Packages can mutually reference each other so load
loops must be detected.

• New packages automatically import java.lang.* and
org.llava.

When llava starts up it creates a org.llava package object
for the built-in llava procedures (e.g., eq?) as shown in
Figure 2. The org.llava package object does not contain
any package objects in its imports lists. Package objects
are also created for java.lang.* (the import lists are left
empty). A package named llava- is created as the initial
package for the REPL. The llava- package object contains
java.lang.* and org.llava in its imports list in that order.
Figure 2 also shows the result of entering (import a.A) at
the REPL. This causes a.A to appear at the head of llava-’s
import list and causes a package object to be created for a.A,
b.B and c.C (the later two not shown).

Figure 2: llava package structure at startup

3.2.1 The import algorithm
The algorithm for importing llava files and Java classes into
other packages is shown in Figure 3. The discussion assumes
the example packages exist as files. (The discussion begins
at the “bottom” of the algorithm and works its way up.)

3.2.2 Importing llava files
When a.A is imported it is not already in the llava- package
imports list. It is not in the full package name map. It is
not a Java class file in the classpath. Therefore directories
and jars on classpath are searched (the final else in the
algorithm).

a.A is found and loaded. When a.A is loaded the package

declaration in its file causes a package object to be created
and the current package to be set to a.A while stacking the
previous package (i.e., llava-).

For a moment assume a.A does not contain import state-
ments. In that case the rest of a.A is read. That causes
bindings to be entered for top-level variables in the current

if alreadyImportedInPackage?
loadLlavaFileIfTouched

else if existsInPackageNameMap
addToCurrentPackageImportList
loadLlavaFileIfTouched

else if java class exists
import class
classAlreadyImported = true
addToCurrentPackageImportList

else
for path in classpath

if path/file exists
load file unless being loaded
addToCurrentPackageImportList
break

if file not found in classpath
throw FileNotFoundException

Figure 3: Import algorithm

package that happens to be a.A. When loading completes
the “package load stack” is popped causing the current pack-
age to revert back to llava-. Then the last statement of the
import algorithm classpath loop is executed causing a.A to
be pushed onto the front of llava-’s import list.

But a.A does contain import statements. When (import

c.C) is read while loading a.A it causes the import algorithm
to be entered recursively. Since c.C has not been seen before,
all the same steps are taken causing the file for c.C to be
loaded. c.C’s package statement causes c.C to become the
current package. Then (import b.B) causes the same steps
to occur until the (import c.C) inside b.B is reached.

At this point the import algorithm detects that c.C is in
the process of being loaded so does not load it again. Then
the next import algorithm step causes c.C to be added to
b.B’s imports list. One recursive call of the import algo-
rithm terminates, and the previous call continues to load
b.B, causing a procedure to be bound to variable b in b.B’s
top-level variable map.

When b.B finishes loading the next import algorithm step
causes b.B to be added to c.C’s imports list. Loading of c.C
continues with c.C’s next statement (import a.A). The rest
of the transitive loading process follows similar steps.

Figure 4 shows the order of loading in this example and
the creation of imports list references. Dashed arcs indicate
that an imports reference is created but the file is not loaded
since it is already in the process of being loaded.

3.2.3 Importing a Java class
if java class exists: When a Java class is imported,
llava creates a package object with variables bound to pro-
cedures for public constructors, public static methods and
public virtual and static fields in the class. llava does not
need to define procedures for public virtual methods since
they are handled automatically by the RI system. The im-
ports list of the created package is empty. The package
importing the Java class has the created package added to
its imports list.

Figure 4: File loading during import

3.2.4 Importing existing packages
if existsInPackageNameMap: If a package X imports a pack-
age Y that is not yet in the X’s import list but Y already
has a package object, then Y is added to X’s imports list.
Further, if the file has been touched since it was last loaded
then load it again.

if alreadyImportedInPackage?: The final (top) part of the
import algorithm covers the case where package X imports
package Y but Y is already in X’s imports list. In this case
the only thing that needs to happen is loading the package
if it has been touched.

3.2.5 Loading touched files
A package being “touched” can also mean that a package
object exists for package X because it was created interac-
tively by typing (package X) into the REPL. At some time
later, if a file is created for package X and if another package
imports X, then the file is loaded.

The algorithm for loading touched files is:

if not classAlreadyImported
loop on classpath

if lastModified = 0 || fileTime > lastModified
load file

When a package is created interactively its package object
contains a lastModified field set to 0. When a file is
later found for that package then the file is loaded and the
lastModified field is set to the last modified time of the file.
Later, if the package is imported again and the file has been
touched (fileTime > lastModified) then the file is loaded
again.

There are some issues at this point. When reloading a pack-
age that has been touched should the previous package ob-
ject be discarded and a new one created, or should bindings
be entered in the existing package? If the former (recreat-
ing) then any bindings entered in the REPL are lost. If the

later (use existing) then an erasures are not seen. llava

does recreation.

The loading algorithm shows that llava does not support
reloading Java classes that have already been imported. It
does support reloading packages that contain class defini-
tions written in llava. In that case a new ClassLoader is
used to contain the dynamically generated code (discussed
later).

3.2.6 Loading reachable touched files
As discussed, if a package is imported and the file for that
package has not been touched, then it is not loaded again.
However, the import algorithm (this part is not shown in
the pseudo code) loads any touched files in the transitive
closure of the non-touched imported file.

3.2.7 Referencing variables by package
As in Java, llava allows references to be short or long. For
example, (f) evaluates to ((c {}) (a {}) (a {})) (and
prints hello) for the following code:

(package a.A) (package c.C)

(= h (import a.A)
‘(a (import

,(new ’java.util.Hashtable))) java.util.Hashtable)
(= h

‘(c
,(new ’Hashtable)))

(define (f)
(list h A.h a.A.h)
(println (System.out)

"hello"))

In the llava implementation, when a variable reference is
executed, if the variable’s identifier does not contain dots
its value is searched starting with the current package then
continuing with the imports of that package until found.
If the variable contains dots then the package part of the
identifier is matched against (partial) package names in the
order of the imports list. Note in the example, as in Java,
that it is not necessary to import a Java class to create a
new instance of that class if the full package and class name
is used.

3.3 Compiler and runtime system
The current implementation of llava uses two types of com-
pilation: “Engine”-based for method bodies and procedure
bodies, and byte code generation for Class definitions.

3.3.1 Engine-based compilation and execution
Method and procedure bodies are compiled at read time into
instances of a Code class. There are specific Code classes for
application, application args, assignment, if, lambda, literal,
reference, and sequence. At run time these classes inter-
act with an Engine that enables last-call-optimization. The
Engine’s run method interacts with the run method on Code

instances (simplified):

public class Engine {
protected Code code;
protected ActivationFrame frame;

public Object run (Code code,

ActivationFrame frame) {
this.code = code;
this.frame = frame;
Object result = code.run(frame, this);
while (result == this) {

result = this.code.run(this.frame, this);
}
return result;

}
public Object tailCall (Code code,

ActivationFrame frame) {
this.code = code;
this.frame = frame;
return this;

}
}

public class CodeReference extends Code {
private int slot;

public CodeReference (Object source, int slot) {
super(source);
this.slot = slot;

}
public Object run (ActivationFrame frame,

Engine engine) {
return frame.get(slot);

}
}

public class CodeIf extends Code {
protected Code testCode;
protected Code thenCode;
protected Code elseCode;

public CodeIf (Object source, Code testCode,
Code thenCode, Code elseCode) {

super(source);
this.testCode = testCode;
this.thenCode = thenCode;
this.elseCode = elseCode;

}
public Object run (ActivationFrame frame,

Engine engine) {
Boolean test =

(Boolean) engine.run(testCode, frame);
if (test.booleanValue() == true) {

return engine.tailCall(thenCode, frame);
}
return engine.tailCall(elseCode, frame);

}
}

Code instances can return a value like CodeReference. In
that case Engine detects that the returned value is not the
Engine itself and Engine.run returns that value. Code in-
stances can also arrange to have the Engine.run method
to continue in its loop evaluating further code by calling
tailCall. tailCall sets the Code to be executed and the
current activation frame in the Engine then returns the
Engine itself. Therefore Engine.run will continue its loop.
This engine technique was used in older versions of Jscheme
[7].

3.3.2 Byte code generation
llava generates byte code for interfaces and classes defined
in llava syntax. llava removes method bodies and replaces
them with code to call a procedure representing the body as
shown in Table 5.

llava does not actually produce a textual representation of
the class shell shown in the table. It generates byte codes
for that shell. It does create the textual representation of
the method bodies (but does not write them to disk).

After generating the class byte code and llava procedures
for method bodies, llava loads the procedure code in mem-
ory. This causes the correct packages and imports lists to
be created for the procedures.

After the procedure packages have been loaded llava loads
the byte code into a custom ClassLoader. The static ini-
tializer in the class is no longer necessary. It was used at
one time when llava wrote the procedure packages to disk.

When calling methods in the generated code, control is trans-
ferred to the corresponding llava procedure. This is done
by creating a Lisp list of the procedure’s identifier followed
by the methods (boxed) arguments. This list is then given
to F.ce (ce is shorthand for “compile-then-evaluate,” F is a
static factory).

The evaluation part of F.ce causes the method’s correspond-
ing procedure to be invoked. The result of the procedure is
the result of F.ce.

4. PERFORMANCE
This section shows the result of executing tak [13] on an
Apple iBook 800MHz G3 with 640MB RAM running OS X
10.3.8 using Apple’s 1.4.2 05 JRE, build 1.4.2 05-141.4, with
the Java HotSpot(TM) Client VM (build 1.4.2-38, mixed
mode).

The JRE was started with -XX:CompileThreshold=2 to cause
the HotSpot compiler to start early. The tests were run
with 100 “warmup” loops to ensure all code is loaded and
HotSpot compiled. The times are the average running the
test 200 times (after warmup).

Figure 5 shows tak execution times for Kawa, Jscheme and
llava. In this test, tak is defined with an explicit lambda to
keep llava from entering its RI system. Therefore the mea-
surements are of Scheme procedure calls. Both Jscheme and
llava are an order of magnitude slower than Kawa, indicat-
ing those systems could benefit from byte code generation
of procedure bodies.

Figure 6 shows the llava execution time of tak defined with
an explicit lambda compared to a generic (i.e., RI) definition.
This means the comparison is between direct procedure calls
and the cost of trying and failing reflection. It is clear that
the overhead is large. No time has been spent optimizing any
part of llava so improvements are possible. In particular,
RI indicates failure by throwing exceptions. It would be
better to return “failure objects.” As a quick experiment,
parts of RI were rewritten to return failure objects. This
resulted in the time shown in the third column labeled “llava
RI opt.”

Figure 7 show Kawa, Jscheme and llava times for the fprint
and fread benchmarks [13]. These times increase our con-
fidence in the accuracy of the tak times since it is expected
that these times be similar since all three systems implement

Table 5: Compiling classes

package org.openhc.llavademo.pb; (package org.openhc.llavademo.pb.PointBase-LLAVA);

import java.util.LinkedList; (define PointBase-LLAVA-getX
(lambda (this)

import org.llava.F; (-f ’x this)))
import org.llava.Pair;

import org.llava.impl.util.List; ...
(define PointBase-LLAVA-move

public abstract class PointBase { (lambda (this dx dy)
static { (-f ’x this (+ (-f ’x this) dx))

F.rce("(import org.openhc.llavademo.pb.PointBase-LLAVA)"); (-f ’y this (+ (-f ’y this) dy))

} (moved this)))

protected java.util.List history = new LinkedList(); (define PointBase-LLAVA-moved
protected int x = 0; (lambda (this)
protected int y = 0; (add (-f ’history this) (toString this))

(println (System.out)
public int getX() { (+ "Moved: " this))))

Pair app = List.list(F.newSymbol("PointBase-LLAVA-getX"), this); ...
return((Integer)F.ce(app)).intValue();

}
...
protected void move(int dx, int dy) {

Pair app = List.list(F.newSymbol("PointBase-LLAVA-move"), this,
new Integer(dx), new Integer(dy));

F.ce(app);
}
protected void moved() {

Pair app = List.list(F.newSymbol("PointBase-LLAVA-moved"), this);
F.ce(app);

}
...

}

Figure 5: Tak time

Scheme read and write in Java (therefore time spent in the
evaluators is minimal).

5. CONCLUSIONS AND FUTURE WORK
llava is an idea and an implementation. It is clear that the
implementation needs improvement. But, more important
at this time, is the idea: Java in Lisp syntax extended with
procedures and macros. llava brings Lisp’s adaptability to
Java.

The main future work is continued llava language design

Figure 6: llava tak lambda/RI time

to bring it on par with Java 5. Of course, even if and when
Java 5 parity is reached, llava language design is unending
as Java continues to evolve.

Much implementation work remains. The current imple-
mentation of llava works on JDK 2.0 and above. The im-
plementation could benefit from Java 5 features and speed.
It is clear from the performance figures that the implemen-
tation can use extensive optimizations or alternatives.

The RI needs optimization. The first, already mentioned,

Figure 7: fprint/fread time

is to report failure by return rather than by throw. Better
caching of previously found methods could improve perfor-
mance.

The Engine-based compiler and runtime system could be
replaced by byte code generation. Once that is done then
llava’s current class compilation technique can be replaced
with direct compilation of the method bodies inline.

The llava implementation has been written such that mul-
tiple versions of llava can exist independently in the same
VM. However, the existing class compilation technique relies
on the existence of a “global” static variable to gain access
to the llava system. This should be avoided.

Despite the implementation’s shortcomings, the idea of llava
is clear: Java in Lisp syntax. llava brings the advantages
of Lisp to Java in a natural intuitive representation.

6. ACKNOWLEDGMENTS
Thanks to Per Bothner, Michael Travers, Peter Norvig, Ken
Anderson and Tim Hickey for their implementations of Scheme
in Java. llava uses ideas or implementation techniques from
their systems. Thanks to Ken Cavanaugh and Tim Hickey
for their comments on the final draft of this paper.

7. REFERENCES
[1] R. Kessler, H. Carr, L. Stoller, and M. Swanson.

Implementing Concurrent Scheme for the Mayfly
distributed parallel processing system. Lisp and

Symbolic Computation, Vol 5, Issue 1-2 (May 1992) pp
73-93.

[2] P. Pourheidari, R. Kessler, and H. Carr. Moped (a
portable debugger) Lisp and Symbolic Computation,
Vol 3, Issue 1 (January 1990) pp 39-65.

[3] H. Carr, R. Kessler, and M. Swanson. Distributed C++
ACM SIGPLAN Notices, Vol 28, Issue 1 (January 1993)

[4] Per Bothner Kawa: Compiling Scheme to Java in
LUGM’98: The 40th Anniversary of LISP: Lisp in the

Mainstream, Nov. 1998, Berkeley, CA.
http://www.gnu.org/software/kawa/

[5] K. Anderson, T .J. Hickey, P. Norvig Silk: A Playful
Combination of Scheme and Java Proceedings of the

Workshop on Scheme and Function Programming , pp
13-22 Rice University, CS Dept. Technical Report
00-368, September 2000.
http://www.cs.brandeis.edu/ tim/Papers/Reflection99/
silk2000.pdf

[6] ArmedBear Common Lisp
http://armedbear-j.sourceforge.net/

[7] T. J. Hickey, P. Norvig, K. Anderson LISP - a
Language for Internet Scripting and Programming in
LUGM’98: The 40th Anniversary of LISP: Lisp in the
Mainstream, Nov. 1998, Berkeley, CA.
http://www.cs.brandeis.edu/ tim/Papers/Reflection99/
lugm.ps

[8] C. Queinnec Lisp in Small Pieces Cambridge
University Press, 1996

[9] T. Travers Skij http://xenia.media.mit.edu/ mt/skij/

[10] T. Travers Scripting and Dynamic Interaction in Java
http://xenia.media.mit.edu/ mt/skij/dynjava/
dynjava.html

[11] T. Travers Dynamic Interaction in Java Dr. Dobb’s
Journal (25:1) January 2000
http://www.ddj.com/documents/s=889/ddj0001l/
0001l.htm

[12] K. Anderson, T. J. Hickey, Reflecting Java Through
Scheme Proceedings of the Second International

Conference on Metalevel Architectures and Reflection

Springer-Verlag Lecture Notes in Computer Science,
vol. 1616, pp. 154-174, 1999. (Reflection’99),
Saint-Malo, France, July 19-21,1999

[13] R. P. Gabriel Performance and Evaluation of Lisp

Systems MIT Press Series in Computer Science, MIT
Press, Cambridge, MA, 1985
http://www.dreamsongs.com/NewFiles/Timrep.pdf

